10 research outputs found

    Motion Calculations on Stent Grafts in AAA

    Get PDF
    Endovascular aortic repair (EVAR) is a technique which uses stent grafts to treat aortic aneurysms in patients at risk of aneurysm rupture. Although this technique has been shown to be very successful on the short term, the long term results are less optimistic due to failure of the stent graft. The pulsating blood flow applies stresses and forces to the stent graft, which can cause problems such as breakage, leakage, and migration. Therefore it is of importance to gain more insight into the in vivo motion behavior of these devices. If we know more about the motion patterns in well-behaved stent graft as well as ill-behaving devices, we shall be better able to distinguish between these type of behaviors These insights will enable us to detect stent-related problems and might even be used to predict problems beforehand. Further, these insights will help in designing the next generation stent grafts. Firstly, this work discusses the applicability of ECG-gated CT for measuring the motions of stent grafts in AAA. Secondly, multiple methods to segment the stent graft from these data are discussed. Thirdly, this work proposes a method that uses image registration to apply motion to the segmented stent mode

    Detectability of motions in AAA with ECG-gated CTA: A quantitative study

    Get PDF
    Purpose: ECG-gated CT enables the visualization of motions caused by the beating of the heart. Although ECG gating is frequently used in cardiac CT imaging, this technique is also very promising for evaluating vessel wall motion of the aortic artery and the motions of (stent grafts inside) abdominal aortic aneurysms (AAA). Late stent graft failure is a serious complication in endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will be beneficial for designing future devices. In addition, these data can be valuable in predicting stent graft failure in patients. To be able to reliably quantify the motion, however, it is of importance to know the performance and limitations of ECG gating, especially when the motions are small, as is the case in AAA. Since the details of the reconstruction algorithms are proprietary information on the CT manufacturers and not in the public domain, empirical experiments are required. The goal of this study is to investigate as to what extent the motions in AAA can be measured using ECG-gated CT. The authors quantitatively investigate four aspects of motion in ECG-gated CT: The detectability of the motion of objects at different amplitudes and different periodic motions, the temporal resolution, and the volume gaps that occur as a function of heart rate.\ud \ud Methods: They designed an experiment on a standard static phantom to empirically determine temporal resolution. To investigate motion amplitude and frequency, as well as patient heart rate, they designed dynamic experiments in which a home-made phantom driven by a motion unit moves in a predetermined pattern.\ud \ud Results: The duration of each ECG-gated phase was found to be 185 ms, which corresponds to half of the rotation time and is thus in accordance with half scan reconstruction applied by the scanner. By using subpixel localization, motions become detectable from amplitudes of as small as 0.4 mm in the x direction and 0.7 mm in the z direction. With the rotation time used in this study, motions up to 2.7 Hz can be reliably detected. The reconstruction algorithm fills volume gaps with noisy data using interpolation, but objects within these gaps remain hidden.\ud \ud Conclusions: This study gives insight into the possibilities and limitations for measuring small motions using ECG-gated CT. Application of the experimental method is not restricted to the CT scanner of a single manufacturer. From the results, they conclude that ECG-gated CTA is a suitable technique for studying the expected motions of the stent graft and vessel wall in AAA.\u

    Technical performance of a dual-energy CT system with a novel deep-learning based reconstruction process: Evaluation using an abdomen protocol

    Get PDF
    Background: A new tube voltage-switching dual-energy (DE) CT system using a novel deep-learning based reconstruction process has been introduced. Characterizing the performance of this DE approach can help demonstrate its benefits and potential drawbacks. Purpose: To evaluate the technical performance of a novel DECT system and compare it to that of standard single-kV CT and a rotate/rotate DECT, for abdominal imaging. Methods: DE and single-kV images of four different phantoms were acquired on a kV-switching DECT system, and on a rotate/rotate DECT. The dose for the acquisitions of each phantom was set to that selected for the kV-switching DE mode by the automatic tube current modulation (ATCM) at manufacturer-recommended settings. The dose that the ATCM would have selected in single-kV mode was also recorded. Virtual monochromatic images (VMIs) from 40 to 130 keV, as well as iodine maps, were reconstructed from the DE data. Single-kV images, acquired at 120 kV, were reconstructed using body hybrid iterative reconstruction. All reconstructions were made at 0.5 mm section thickness. Task transfer functions (TTFs) were determined for a Teflon and LDPE rod. Noise magnitude (SD), and noise power spectrum (NPS) were calculated using 240 and 320 mm diameter water phantoms. Iodine quantification accuracy and contrast-to-noise ratios (CNRs) relative to water for 2, 5, 10, and 15 mg I/ml were determined using a multi-energy CT (MECT) phantom. Low-contrast visibility was determined and the presence of beam-hardening artifacts and inhomogeneities were evaluated. Results: The TTFs of the kV-switching DE VMIs were higher than that of the single-kV images for Teflon (20% TTF: 6.8 lp/cm at 40 keV, 6.2 lp/cm for single-kV), while for LDPE the DE TTFs at 70 keV and above were equivalent or higher than the single-kV TTF. All TTFs of the kV-switching DECT were higher than for the rotate/rotate DECT. The SD was lowest in the 70 keV VMI (12.0 HU), which was lower than that of single-kV (18.3 HU). The average NPS frequency varied between 2.3 lp/cm and 4.2 lp/cm for the kV-switching VMIs and was 2.2 lp/cm for single-kV. The error in iodine quantification was at maximum 1 mg I/ml (at 5 mg I/ml). The highest CNR for all iodine concentrations was at 60 keV, 2.5 times higher than the CNR for single-kV. At 70–90 keV, the number of visible low contrast objects was comparable to that in single-kV, while other VMIs showed fewer objects. At manufacturer-recommended ATCM settings, the CTDIvol for the DE acquisitions of the water and MECT phantoms were 12.6 and 15.4 mGy, respectively, and higher than that for single-kV. The 70 keV VMI had less severe beam hardening artifacts than single-kV images. Hyper- and hypo-dense blotches may appear in VMIs when object attenuation exceeds manufacturer recommended limits. Conclusions: At manufacturer-recommended ATCM settings for abdominal imaging, this DE implementation results in higher CTDIvol compared to single-kV acquisitions. However, it can create sharper, lower noise VMIs with up to 2.5 times higher iodine CNR compared to single-kV images acquired at the same dose

    Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction

    Get PDF
    BACKGROUND. Because thick-section images (typically 3–5 mm) have low image noise, radiologists typically use them to perform clinical interpretation, although they may additionally refer to thin-section images (typically 0.5–0.625 mm) for problem solving. Deep learning reconstruction (DLR) can yield thin-section images with low noise. OBJECTIVE. The purpose of this study is to compare abdominopelvic CT image quality between thin-section DLR images and thin- and thick-section hybrid iterative reconstruction (HIR) images. METHODS. This retrospective study included 50 patients (31 men and 19 women; median age, 64 years) who underwent abdominopelvic CT between June 15, 2020, and July 29, 2020. Images were reconstructed at 0.5-mm section using DLR and at 0.5-mm and 3.0-mm sections using HIR. Five radiologists independently performed pairwise comparisons (0.5-mm DLR and either 0.5-mm or 3.0-mm HIR) and recorded the preferred image for subjective image quality measures (scale, −2 to 2). The pooled scores of readers were compared with a score of 0 (denoting no preference). Image noise was quantified using the SD of ROIs on regions of homogeneous liver. RESULTS. For comparison of 0.5-mm DLR images and 0.5-mm HIR images, the median pooled score was 2 (indicating a definite preference for DLR) for noise and overall image quality and 1 (denoting a slight preference for DLR) for sharpness and natural appearance. For comparison of 0.5-mm DLR and 3.0-mm HIR, the median pooled score was 1 for the four previously mentioned measures. These assessments were all significantly different (p < .001) from 0. For artifacts, the median pooled score for both comparisons was 0, which was not significant for comparison with 3.0-mm HIR (p = .03) but was significant for comparison with 0.5-mm HIR (p < .001) due to imbalance in scores of 1 (n = 28) and −1 (slight preference for HIR, n = 1). Noise for 0.5-mm DLR was lower by mean differences of 12.8 HU compared with 0.5-mm HIR and 4.4 HU compared with 3.0-mm HIR (both p < .001). CONCLUSION. Thin-section DLR improves subjective image quality and reduces image noise compared with currently used thin- and thick-section HIR, without causing additional artifacts. CLINICAL IMPACT. Although further diagnostic performance studies are warranted, the findings suggest the possibility of replacing current use of both thin- and thick-section HIR with the use of thin-section DLR only during clinical interpretations

    Automatic segmentation of the wire frame of stent grafts from CT data

    Get PDF
    Endovascular aortic replacement (EVAR) is an established technique, which uses stent grafts to treat aortic aneurysms in patients at risk of aneurysm rupture. Late stent graft failure is a serious complication in endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will be beneficial for designing future devices. In addition, analysis of stent graft movement in individual patients in vivo can be valuable for predicting stent graft failure in these patients

    Coronary Artery Calcium Scoring:Toward a New Standard

    Get PDF
    OBJECTIVES: Although the Agatston score is a commonly used quantification method, rescan reproducibility is suboptimal, and different CT scanners result in different scores. In 2007, McCollough et al (Radiology 2007;243:527-538) proposed a standard for coronary artery calcium quantification. Advancements in CT technology over the last decade, however, allow for improved acquisition and reconstruction methods. This study aims to investigate the feasibility of a reproducible reduced dose alternative of the standardized approach for coronary artery calcium quantification on state-of-the-art CT systems from 4 major vendors. MATERIALS AND METHODS: An anthropomorphic phantom containing 9 calcifications and 2 extension rings were used. Images were acquired with 4 state-of-the-art CT systems using routine protocols and a variety of tube voltages (80-120 kV), tube currents (100% to 25% dose levels), slice thicknesses (3/2.5 and 1/1.25 mm), and reconstruction techniques (filtered back projection and iterative reconstruction). Every protocol was scanned 5 times after repositioning the phantom to assess reproducibility. Calcifications were quantified as Agatston scores. RESULTS: Reducing tube voltage to 100 kV, dose to 75%, and slice thickness to 1 or 1.25 mm combined with higher iterative reconstruction levels resulted in an on average 36% lower intrascanner variability (interquartile range) compared with the standard 120 kV protocol. Interscanner variability per phantom size decreased by 34% on average. With the standard protocol, on average, 6.2 ± 0.4 calcifications were detected, whereas 7.0 ± 0.4 were detected with the proposed protocol. Pairwise comparisons of Agatston scores between scanners within the same phantom size demonstrated 3 significantly different comparisons at the standard protocol (P 0.05). CONCLUSIONS: On state-of-the-art CT systems of 4 different vendors, a 25% reduced dose, thin-slice calcium scoring protocol led to improved intrascanner and interscanner reproducibility and increased detectability of small and low-density calcifications in this phantom. The protocol should be extensively validated before clinical use, but it could potentially improve clinical interscanner/interinstitutional reproducibility and enable more consistent risk assessment and treatment strategies
    corecore